skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Santos, Joao F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Open Radio Access Network (O-RAN) architecture enables the deployment of third-party applications on the RAN Intelligent Controllers (RICs). However, the operation of third-party applications in the Near Real-Time RIC (Near-RT RIC), known as xApps, may result in conflicting interactions. Each xApp can independently modify the same control parameters to achieve distinct outcomes, which has the potential to cause performance degradation and network instability. The current conflict detection and mitigation solutions in the literature assume that all conflicts are known a priori, which does not always hold due to complex and often hidden relationships between control parameters and Key Performance Indicators (KPIs). In this paper, we introduce the first data-driven method for reconstructing and labeling conflict graphs in O-RAN. Specifically, we leverage GraphSAGE, an inductive learning framework, to dynamically learn the hidden relationships between xApps, parameters, and KPIs. Our numerical results, based on a conflict model used in the O-RAN conflict management literature, demonstrate that our proposed method can effectively reconstruct conflict graphs and identify the conflicts defined by the O-RAN Alliance. 
    more » « less
    Free, publicly-accessible full text available March 24, 2026